A substantial oxygen isotope effect at O2 in the OMP decarboxylase reaction: mechanistic implications.
نویسندگان
چکیده
Orotidine-5'-monophosphate decarboxylase (OMP decarboxylase, ODCase) catalyzes the decarboxylation of orotidine-5'-monophosphate (OMP) to uridine-5'-monophosphate (UMP). Despite extensive enzymological, structural, and computational studies, the mechanism of ODCase remains incompletely characterized. Herein, carbon kinetic isotope effects were measured for both the natural abundance substrate and a substrate mixture synthesized for the purpose of carrying out the remote double label isotope effect procedure, with O2 of the substrate as the remote position. The carbon kinetic isotope effect on enzymatic decarboxylation of this substrate mix was measured to be 1.0199 +/- 0.0007, compared to the value of 1.0289 +/- 0.0009 for natural abundance OMP, revealing an (18)O2 isotope effect of 0.991 +/- 0.001. This value equates to an intrinsic isotope effect of approximately 0.983, using a calculated commitment factor derived from previous isotope effect data. The measured (18)O2 isotope effect requires a mechanism with one or more enzymatic processes, including binding and/or chemistry, that contribute to this substantial inverse isotope effect. (18)O2 kinetic isotope effects were calculated for four proposed mechanisms: decarboxylation preceded by proton transfer to 1) O2; 2) O4; and 3) C5; and 4) decarboxylation without a preceding protonation step. A mechanism involving no pre-decarboxylation step does not appear to have any steps with the necessary substantial inverse (18)O2 effect, thus calling into question any mechanism involving simple direct decarboxylation. Protonation at O2, O4, or C5 are all calculated to proceed with inverse (18)O2 effects, and could contribute to the experimentally measured value. Recent crystal structures indicate that O2 of the substrate appears to be involved in an intricate bonding arrangement involving the substrate phosphoryl group, an enzyme Gln side chain, and a bound water molecule; this interaction likely contributes to the observed isotope effect.
منابع مشابه
Isotopic Studies of Methane Oxidation Pathways on PdO Catalysts
Mechanistic details of CH4 oxidation were examined on PdO/ ZrO2 catalysts using isotopic tracer methods and measurements of kinetic isotope effects. Normal kinetic isotope effects were observed using CH4/O2 and CD4/O2 reactant mixtures. The (kH/kD) ratio was between 2.6 and 2.5, and it decreased slightly as the reaction temperature increased from 527 to 586 K. These kinetic isotope effects refl...
متن کاملCatalase reaction by myoglobin mutants and native catalase: mechanistic investigation by kinetic isotope effect.
The catalase reaction has been studied in detail by using myoglobin (Mb) mutants. Compound I of Mb mutants (Mb-I), a ferryl species (Fe(IV)=O) paired with a porphyrin radical cation, is readily prepared by the reaction with a nearly stoichiometric amount of m-chloroperbenzoic acid. Upon the addition of H2O2 to an Mb-I solution, Mb-I is reduced back to the ferric state without forming any interm...
متن کاملMolecular dynamic study of orotidine-5'-monophosphate decarboxylase in ground state and in intermediate state: a role of the 203-218 loop dynamics.
Molecular dynamics simulations have been used to derive the structures of ground (orotidine-5'-monophosphate decarboxylase x orotidine 5'-monophosphate; ODC x OMP) and intermediate (ODC x intermediate; ODC x I(-)) states in the ODC-catalyzed decarboxylation of OMP. For comparison, a molecular dynamics simulation of the conformers of OMP dissolved in water was also studied. This structural infor...
متن کاملA mechanistic study of sialic acid mutarotation: implications for mutarotase enzymes.
The mutarotation of N-acetylneuraminic acid (Neu5Ac) proceeds by four kinetically distinct pathways: (i) the acid-catalyzed reaction of neutral Neu5Ac; (ii) the spontaneous reaction of the carboxylic acid (the kinetically equivalent acid-catalyzed reaction on the anion being ruled out by the solvent deuterium kinetic isotope effect of 3.74 ± 0.68); (iii) a spontaneous, water-catalyzed, reaction...
متن کاملComputational Model of Reaction Mechanism of Alkyl Peroxy Radicals with Organic Compounds in the Presence and Absence of Oxygen
On the basis of experimental data a kinetic model for the heterogeneous interaction between alkylperoxyradicals and organic compounds in Langmuir- Hinshelwood approach at room temperature has been offered.The effect of oxygen on the kinetics of process in the presence, [O2]o = 1 x 1011 – 1.6 x 1012 molecules.cm-2, and absence of oxygen has been analyzed. Over time the chain degenerate branching...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Organic & biomolecular chemistry
دوره 6 24 شماره
صفحات -
تاریخ انتشار 2008